

Next-Generation Therapies Transforming Patient Care Today

April 2015

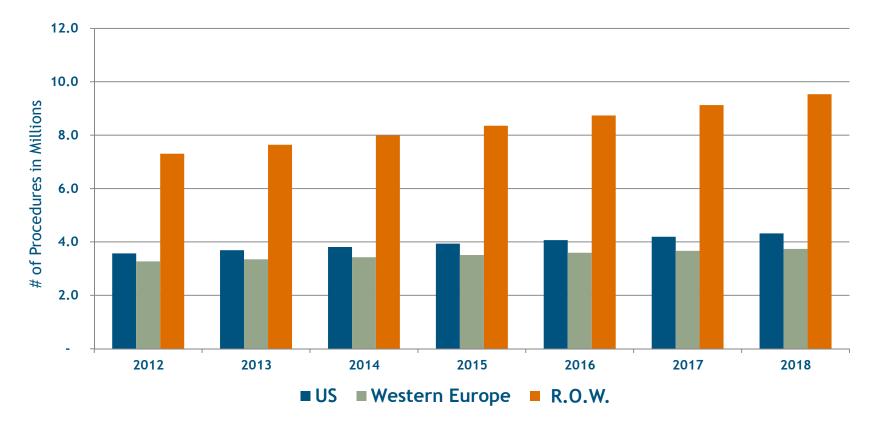
Safe Harbor

This presentation contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements are based on the current intent and expectations of the management of Omeros Corporation. These statements are not guarantees of future performance and involve risks and uncertainties that are difficult to predict. Omeros' actual results and the timing and outcome of events may differ materially from those expressed in or implied by the forward-looking statements because of risks associated with Omeros' unproven preclinical and clinical development activities, regulatory oversight, product commercialization, intellectual property claims, competitive developments, litigation and other factors. For additional information about the factors that affect the company's business, please see the company's latest Forms 10-K and 10-Q filed with the Securities and Exchange Commission. Except as required by law, Omeros undertakes no obligation to update any forward-looking statements in this presentation, whether as a result of new information, future events or otherwise.

Products and Programs

Program	Targeted Procedure/ Disease	Pre-clinical	Phase 1	Phase 2	Phase 3	FDA Approval	Commercial Launch	Economic Rights
Commercial Products								
Omidria™ (OMS302) - Ophthalmology	Cataract Surgery or Intraocular Lens Replacement							MEROS
Clinical Programs	-							
OMS103 - Arthroscopy	Arthroscopic Meniscectomy							
MASP (OMS721) - Complement-Mediated Disorders	TMA (aHUS, TTP, Transplant-Related TMA)							A.
PDE10 (OMS824) - CNS Disorders	Schizophrenia							OMEROS
PDE10 (OMS824) - CNS Disorders	Huntington's Disease							
PPARy (OMS405) - Addiction	Opioid and Nicotine Addiction							
OMS201 - Urology	Ureteroscopy							
Preclinical Programs								
PDE7 (OMS527) - CNS Disorders	Addictions and Compulsive Disorders; Movement Disorders							
Plasmin (OMS616) - Bleeding Disorders	Surgical and Traumatic Bleeding							
MASP (OMS906) - Alternative Pathway Disorders	Paroxysmal Noctural Hemoglobinuria							MEROS
GPR17 - CNS Disorders	Demyelinating Disorders							
GPCR Platform	Multiple Disorders Across Therapeutic Areas							
Antibody Platform	Multiple Disorders Across Therapeutic Areas							

Experienced Management with Deep Industry Experience


	Position	Background
Gregory Demopulos, MD	Chairman, President & CEO	Stanford and Duke Departments of Orthopedic Surgery
Tim Duffy	VP, Business Development	MDRNA, Prometheus, Procter & Gamble
Kenneth M. Ferguson, PhD	VP, Development & CDO	ICOS, Cold Spring Harbor Laboratory
George Gaitanaris, MD, PhD	VP, Research & CSO	Nura, Primal, NCI
Patrick Gray, PhD	Scientific Fellow	Accelerator, Nura, Macrogenics, ICOS, Genentech
Michael Jacobsen	VP, Finance & CAO	Sarepta, ZymoGenetics, ICOS, Onvia, Mosaix
Marcia Kelbon, JD	VP, Patent & General Counsel and Secretary	Christensen O'Connor Johnson Kindness
William J. Lambert, PhD	VP, Chemistry, Manufacturing and Controls	MedImmune, Pacira, Eisai, Pfizer, Upjohn
Catherine Melfi, PhD	VP, Regulatory Affairs and Quality Systems	Eli Lilly, Indiana University
Patricia Sandler	VP, Sales & Marketing	Sunovion, J&J, SmithKline Beecham, Pfizer
J. Steven Whitaker, MD, JD	VP, Clinical Development & CMO	Allon Therapeutics, ICOS

Lens Replacement Procedures

Source: Market Scope, Comprehensive Report on the Global IOL Market, 2011. R.O.W. includes Japan, China, Latin America, Korea, Canada, Australia, Saudi Arabia, Taiwan, Greece, Czech, Hungary, Israel, Hong Kong, UAE, Singapore, New Zealand

Once Added to Irrigation Solution, No Change in Surgical Procedure

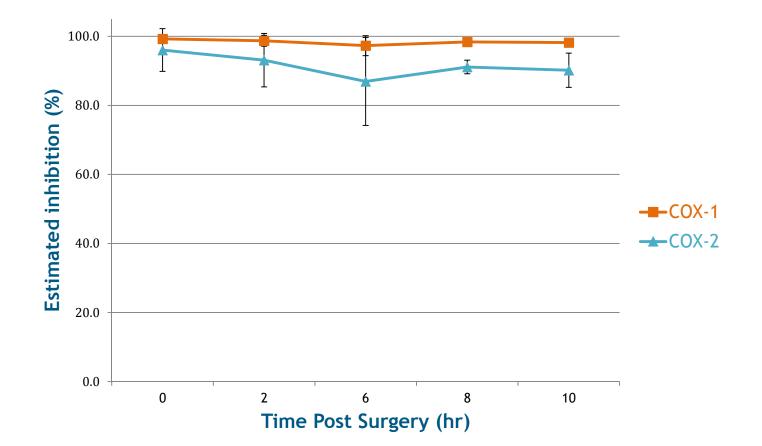
Preoperative Topical Medication is Washed Out by Irrigation Solution

- 14 Patients Undergoing Cataract Surgery were Eligible
- Patients were Prescribed Topical Ketorolac According to the Surgeon's Usual Practice, Beginning the Day Prior to Surgery
 Good Patient Compliance
- 100-µL Aqueous Humor Samples Drawn Immediately Prior to the Initial Surgical Incision and Again Prior to Final Anterior Chamber Re-inflation and Wound Closure

Patient	Prior to Incision	Prior to Wound Closure
1	87.4	Undetectable
3	39	Undetectable
4	4.9	Undetectable
6	195	Undetectable
7	29.5	1.80
8	75.1	6.32
9	369	2.11
10	105	Undetectable
11	244	2.90
12	64.6	Undetectable
13	137	Undetectable
14	120	Undetectable

Undetectable = Below the Lower Limit of Quantification (i.e., <1 ng/mL)

Ketorolac Levels in the Anterior Chamber at the End of the Procedure Were Nominal or Undetectable in All Patients

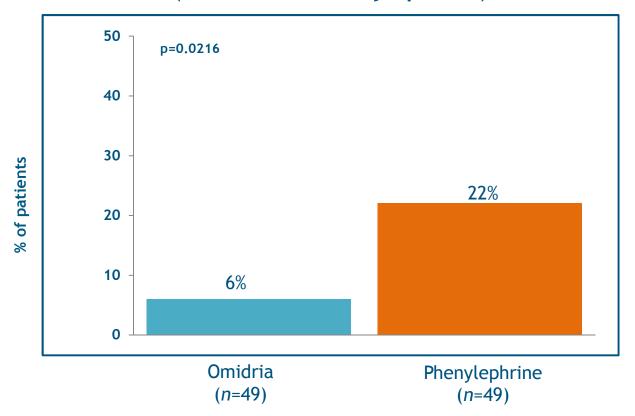


Study Design	0	IOL Replacement Surgery Was Performed on 20 Canines Using OMIDRIA in Irrigation Solution
	•	Data Were Collected from Four Animals Per Time Point at 0, 2, 6, 8, and 10 Hours Post-procedure
	0	Eyes Were Enucleated and Flash Frozen; Partly Thawed Eyes Were Dissected and Retina, Choroid, Vitreous, Ciliary Body, Iris, Lens Capsule, Cornea, and Sclera Were Collected
	0	Ketorolac Levels Were Determined in All Samples
	•	Projected Inhibition of COX Enzymes Was Estimated Using IC50 Values for COX-1 and COX-2

Ketorolac levels inhibited COX-1 and COX-2 Pathways from 0 to at Least 10 hours, Consistent with Phase 3 Pain Data

	Summary
Trial Design	 N=221, Vehicle-Controlled, Randomized, Double-Blind Study Multicenter All Subjects Received Preoperative Mydriatics and Anesthetics Four-Arm, Full-Factorial Design
Co-Primary Endpoints	 Maintenance of Mydriasis (Pupil Dilation) Reduction of Postoperative Pain
Study Results*	 Statistically Significant and Clinically Meaningful Benefits Demonstrating Contribution of Each Component Mydriasis Omidria Better than: Ketorolac Alone (p<0.0001) Vehicle (p<0.0001) Pain Omidria Better than: Phenylephrine Alone (p=0.0089) Vehicle (p=0.0418)
Presented at American Academy of Ophthalmology, October 2011; Alan Crandall, MD	 Omidria was Well Tolerated

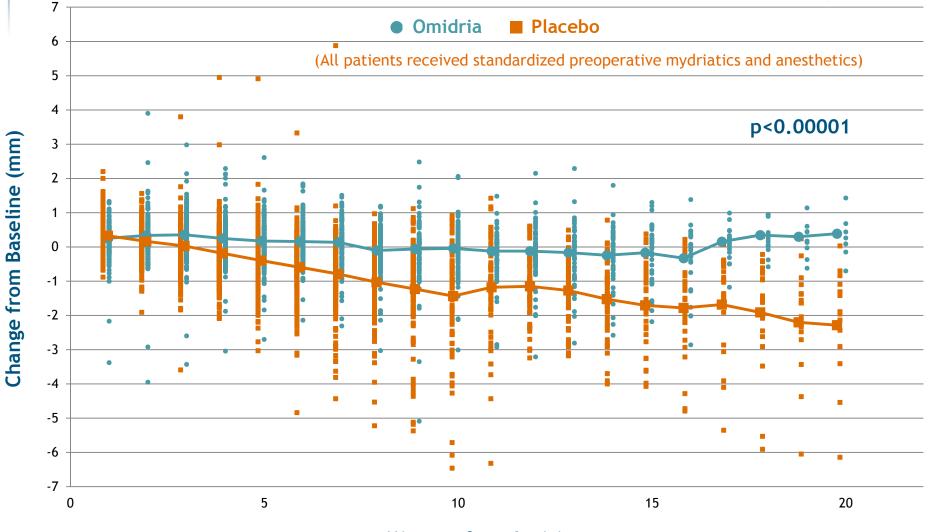
	Ρι	ıpil Diameter < 6 m	nm	
	Vehicle* (n = 53)	Ketorolac (n = 52)	Phenylephrine (n = 49)	Omidria (n = 49)
n (%)	25 (46%)	18 (35%)	11 (22%)	3 (6%)
p-value vs. Omidria	< 0.0001	0.0004	0.0216	

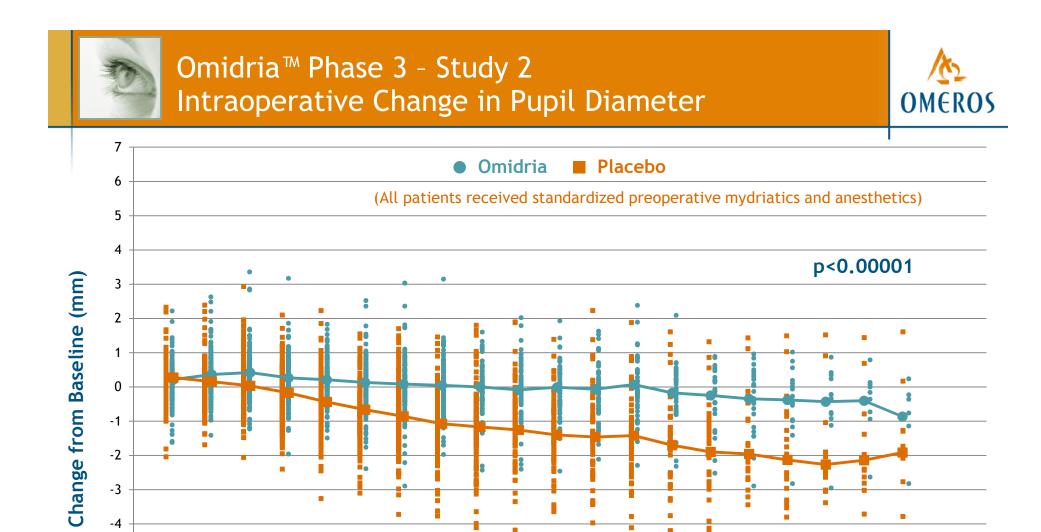

*All patients, including vehicle-treated patients, received standard preoperative mydriatic and anesthetics

Both Ketorolac and Phenylephrine Contribute to Inhibition of Miosis

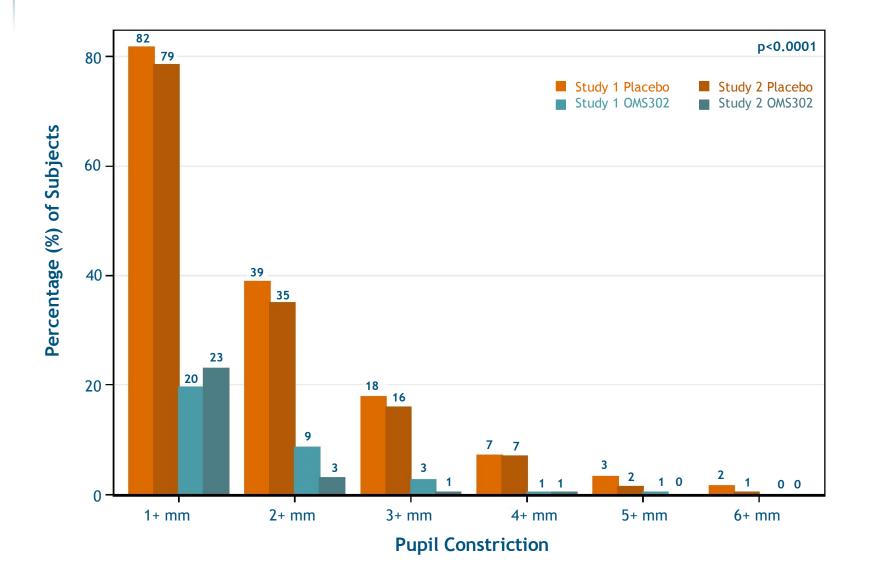
Percent of Subjects with Pupil Diameter < 6 mm (Omidria vs. Phenylephrine)

Added to Irrigation Solution, Omidria is Superior to Phenylephrine Alone


Overview


Trial Design	 Multicenter, Placebo-Controlled, Randomized, Double-Blind Study N=405 (ILR-003) and N=416 (ILR-004) All Subjects Received Preoperative Mydriatics and Anesthetics Two-Arm, Randomized 1:1
Co-Primary Endpoints	 Maintenance of Intraoperative Mydriasis (Pupil Dilation) Reduction of Pain in Early Postoperative Period*
Study Results * Principal secondary endpoint in ILR-003	 Omidria Provided Statistically Significant and Clinically Meaningful Benefits in Both Studies Mydriasis (p<0.00001) in Both Studies Pain (p<0.0001 in ILR-003 and p=0.0002 in ILR-004) Omidria was Well Tolerated

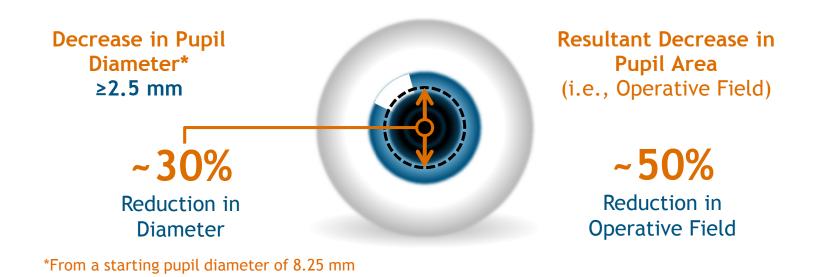
Omidria[™] Phase 3 - Study 1 Intraoperative Change in Pupil Diameter



-5

-6

-7

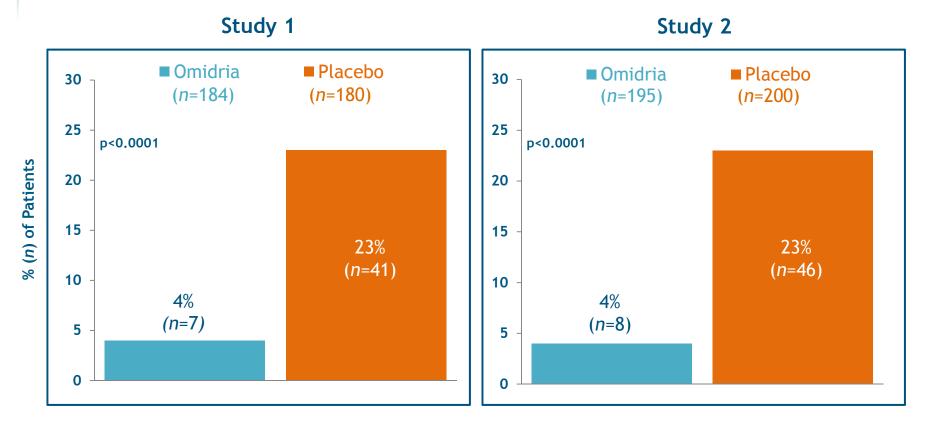


Intraoperative Pupillary Miosis

6 mm to 3.5 mm Represents a 66% Reduction in Operative Field

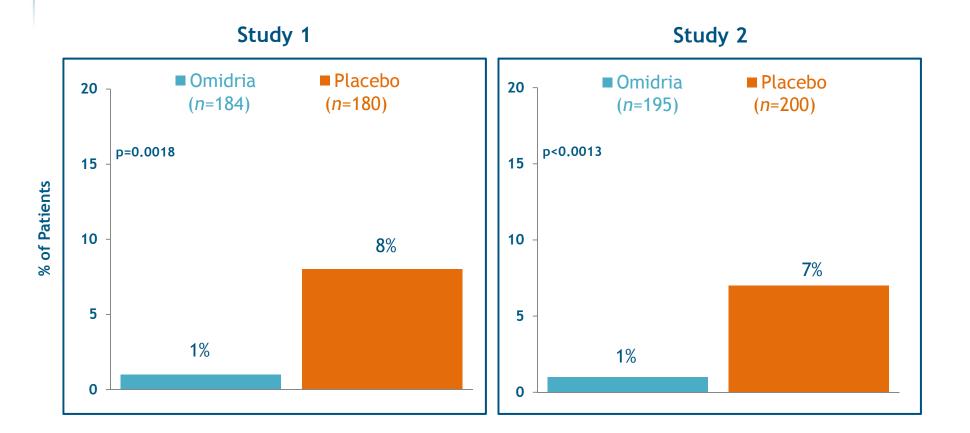
*All patients, including placebo-treated patients, received standard preoperative mydriatics and anesthetics

Study 2



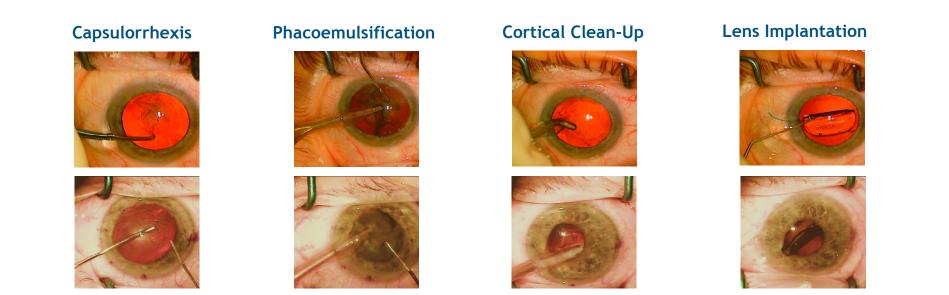
*All patients, including placebo-treated patients, received standard preoperative mydriatics and anesthetics

Pupil Diameter <6 mm is Associated with a Mulitply Increased Rate of Complications (e.g., Posterior Capsule Tears, Retained Lens Fragments, and Vitreous Loss)

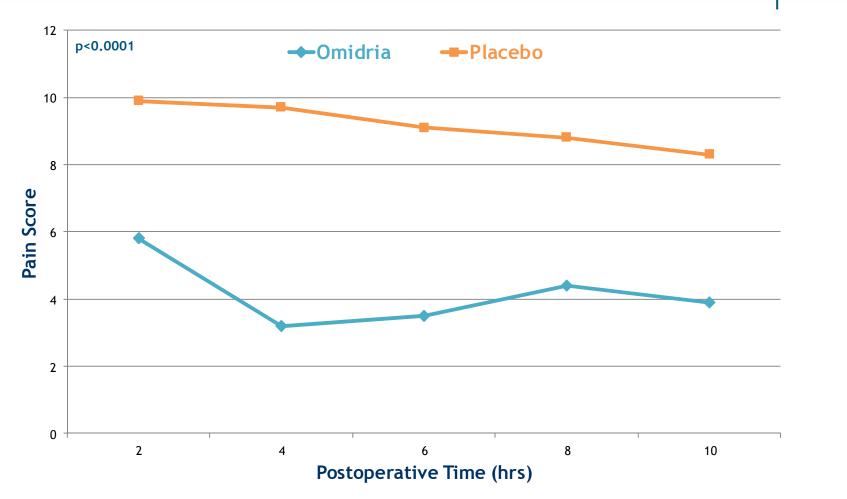


*All patients, including placebo-treated patients, received standard preoperative mydriatics and anesthetics

Pupil Diameter <6 mm is Associated with a Mulitply Increased Rate of Complications (e.g., Posterior Capsule Tears, Retained Lens Fragments, and Vitreous Loss)

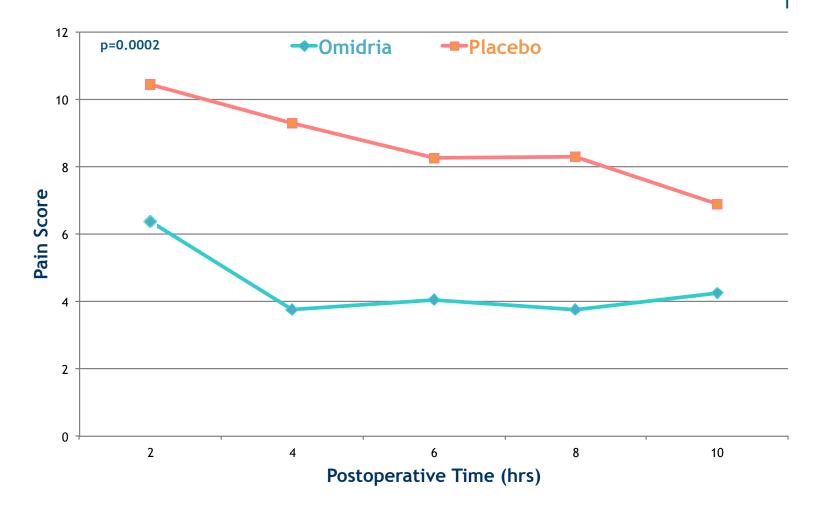

Fewer Than 1% of Omidria Subjects Experienced Pupil Diameter < 4 mm

*All subjects, including placebo-treated subjects, received standard preoperative mydriatics and anesthetics



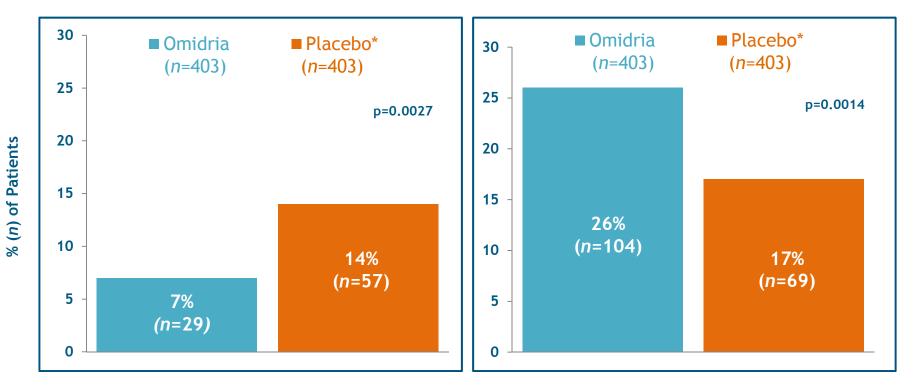
Despite Every Advance (e.g., phaco, ECCE, femto) in Cataract Surgery Over the Past Four Decades, *Small Pupils are Still a Factor Associated with Cataract Surgery Complications*

Poor Visualization Increases the Risk of Complications



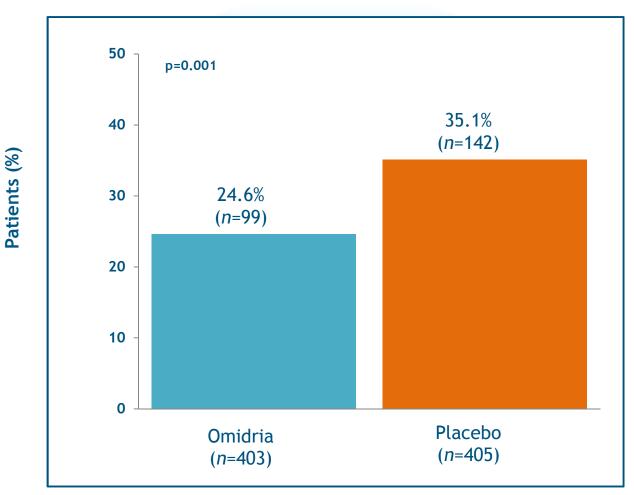
*All patients received standardized preoperative mydriatics and anesthetics.

OMEROS


*All patients received standardized preoperative mydriatics and anesthetics.

Moderate-to-Severe Pain (VAS ≥ 40 At Any Time Point)

Pain-Free Patients (VAS = 0 At All Time Points)



*All patients received standardized preoperative mydriatics and anesthetics.

Analgesic Use on Day of Surgery

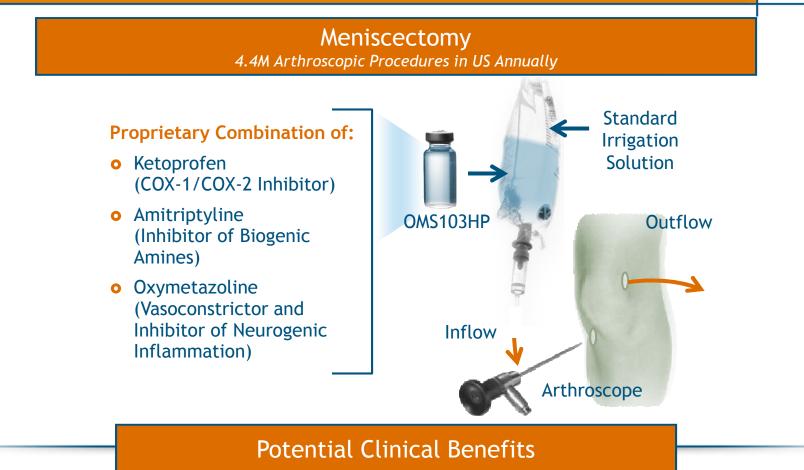
Post hoc analysis

	Intraocular Lens Replacement Surgery
Efficacy	 Clinically Meaningful Improvement in: Maintenance of Mydriasis and Prevention of Miosis Postoperative Pain Reduction 580% More Placebo Patients than Omidria Patients Experienced Pupil Size of < 6 mm at Cortical Clean-up 197% More Placebo Patients than Omidria Patients Reported Moderate-to-Severe Pain in the Early Postoperative Period 51% More Omidria Patients than Placebo Patients Reported No Pain in the Early Postoperative Period
Safety	 Omidria was Well Tolerated Adverse Events Comparable Between Omidria and Placebo Most Common Ocular Adverse Events were Eye Pain and Inflammation, and Increased IOP

Regulatory	 FDA Approval in May 2014 FDA Approved Broadly for Use in All Lens Replacement Procedures (e.g., Cataract with Standard or Premium Lens; RLE) US and European Pediatric Plans Approved MAA under Review - Centralized Procedure European Approval Expected in 2015
Market	 4M IOL Replacement Procedures in US, 23M Worldwide in 2015* Annual Growth Rate 3-4%* US and European KOL Advisory Boards Established First and Only FDA-Approved Product for Intraocular Use to Maintain Pupil Dilation and to Reduce Postoperative Pain Favorable Regulatory Environment with Increasingly Stringent Policies toward Compounded Products

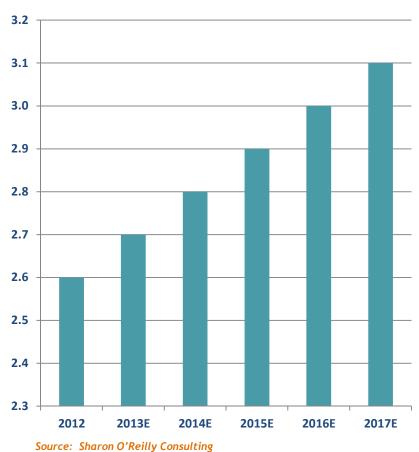
*2011 Comprehensive Report on the Global IOL Market (May 2011)

Reimbursement	 CMS Transitional Pass-through Reimbursement Granted Reimbursed at WAC (\$465)+6% Followed by ASP+6% Expected to Extend through December 31, 2017 Commercial Payers May, But are Not Obligated to, Follow CMS Finalizing Hiring of National and Regional Reimbursement Team
US Launch	 In-House Sales, Marketing and Back-Office Management Teams 40 Sales Representatives Able to Access: >80% of Medicare Cataract Procedures >80% of Top 50, 100 and 150 Cataract Surgeons by Volume Commercial Manufacturing and Distribution Established Successful Controlled Launch in February/March Broad Launch Underway Coincides with ASCRS Annual Meeting
European Launch	 Launch Expected in Late 2015, Assuming EMA Approval Followed by Partnering



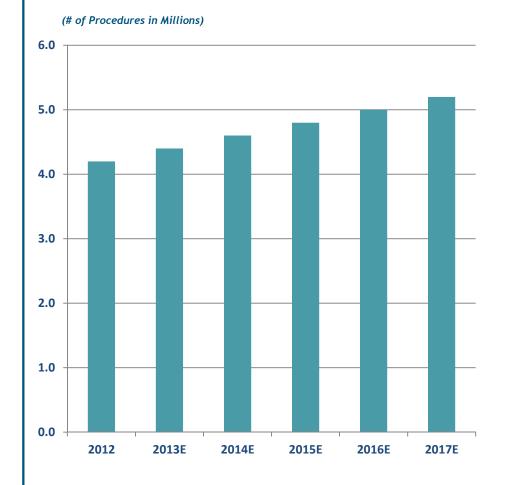
Patents	0 0 0	 Directed to Intraoperative Delivery to the Eye of Any Combination of Agents Drawn from Two or More of the Following Classes: Mydriatic Anti-Inflammatory Analgesic / Local Anesthetic Intraocular Pressure Lowering 31 Issued / 15 Pending Method and Composition Claims Granted in US and Europe Excluding Any Extensions, Issued Patents Expire in 2023, Pending Applications Expire in 2033
New Legislation - DQSA	0 0 0 0	Traditional Compounding Pharmacies (503A) Require Prescriptions FDA Increasingly Prohibiting Compounding at Surgery Centers Compounders Registered as Outsourcing Facilities (503B) Must Pay Fees, Follow GMP, Undergo FDA Inspection and Enforcement Neither 503A nor 503B Compounders May Compound Bulk Quantities of Close Copies of Approved Products Outsourcing Facilities and Traditional Compounders are Subject to Patent Enforcement with Potential Treble Damages

OMS103HP: Arthroscopy



- Reduce Postoperative Pain
- Improve Recovery of Range of Motion
- Improve Recovery of Joint Function
- Reduce Detrimental Inflammatory Effects on Long-Term Joint Health

OMS103HP: Arthroscopic Market Opportunity



US Knee Arthroscopy Procedures

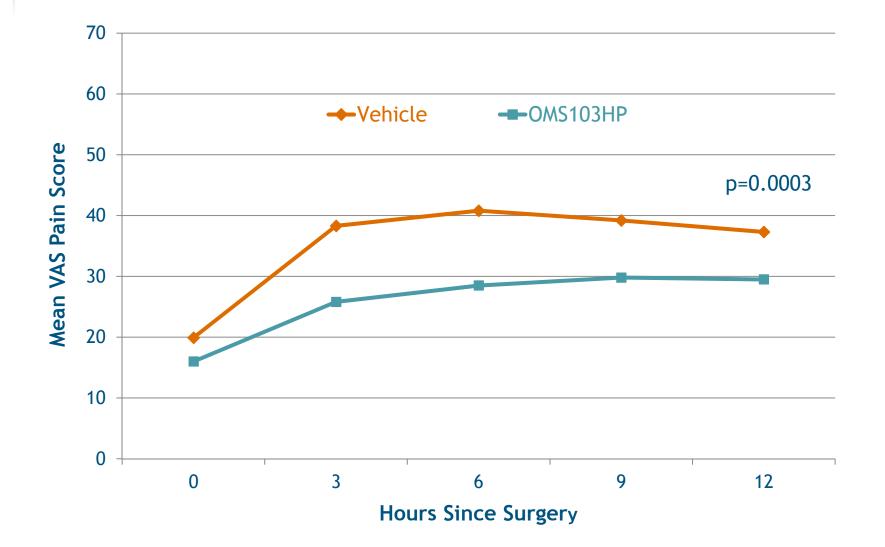
(# of Procedures in Millions)

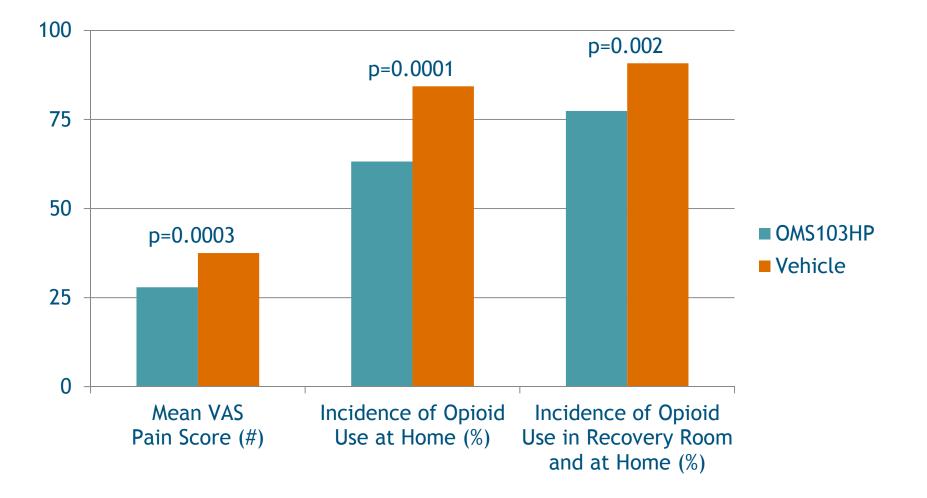
US Total Arthroscopy Procedures

OMS103HP: Meniscectomy Phase 2 Trial

Summary

Trial Design	 Vehicle-Controlled, Randomized, Double-Blind Study Multicenter (10 US Sites) Two Arms: OMS103HP and Vehicle 90-Day Postoperative Follow-Up Full Analysis Population = 143
Key Endpoints	 Pain Knee Function Range of Motion
Study Results* *The Journal of Arthroscopic and Related Surgery, Vol. 27, No. 8, August 2011	 Clinically Meaningful Improvement in: Pain Function Range of Motion Consistent Over 90 Days Safe and Well-Tolerated




	Overview
Trial Design	 Vehicle-Controlled, Randomized, Double-Blind Study Multicenter (18 US Sites)
	• Two Arms: OMS103HP and Vehicle
	 30-Day Efficacy Postoperative Follow-Up
	• Full Analysis Population = 308
Key Endpoints	• Knee Symptoms
	• Pain
	• Range of Motion
Study Results	• No Significant Difference in the KOOS Symptoms Subscale
	 Statistically Significant and Clinically Meaningful
	 Improvement in Early Postoperative Pain
	 Decreased Postoperative Opioid Use
	• Incidence of Inflammatory Adverse Events, Tourniquet Use and Crutch Use, as Well as Time to Discontinuation of Crutches and Return to Work All Favored OMS103HP
	• Safe and Well-Tolerated

OMS103HP: Phase 3 Meniscectomy MEN-002 - Early Postoperative Pain Scores

OMS103HP: Phase 3 Meniscectomy MEN-002 - Postoperative Pain and Opioid Use

OMEROS

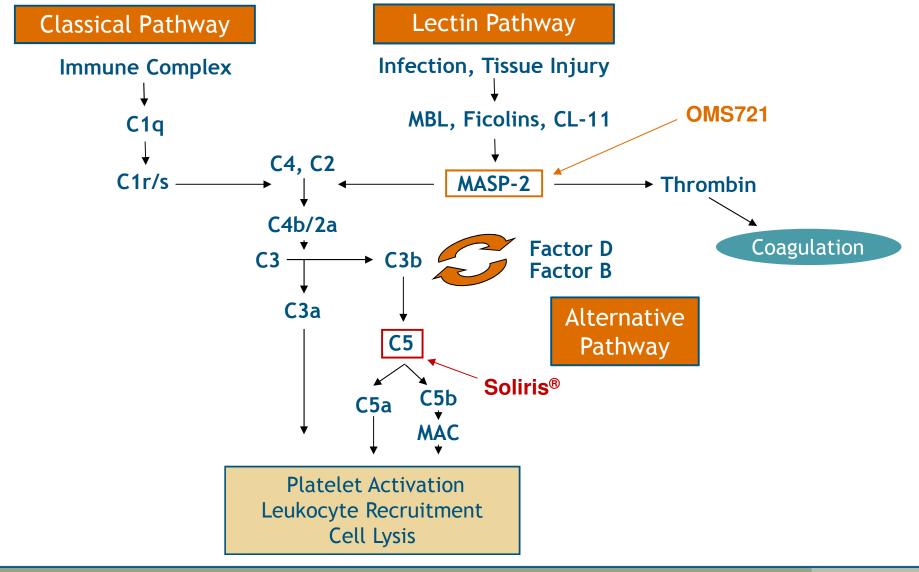
OMS103HP: Phase 3 Meniscectomy Study Conclusions

Efficacy	 Clinically Meaningful Improvement in Early Postoperative Pain 134% More OMS103HP Patients Required No Postoperative Opioids at Home on the Day of Surgery 146% More OMS103HP Patients Required No Postoperative Opioids on the Day of Surgery While Not Powered for Significance, More OMS103HP Patients: Reported No Postoperative Inflammatory Adverse Event Did Not Use Crutches Reported Early Discontinuation of Crutch Use Did Not Have a Tourniquet Used During the Procedure No Significant Difference in KOOS Subscales
Safety	 Incidence of Adverse Events Was Higher with Vehicle Safe and Well-Tolerated
Next Steps	• Re-designing Phase 3 Program to Make Pain the Primary Endpoint

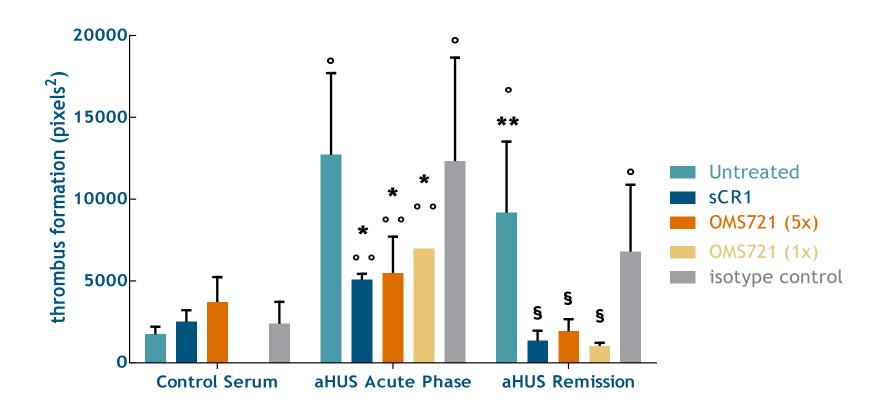
Alternative Commercialization Opportunity for PharmacoSurgery[®] Platform

Manufacture and Sales through Outsourcing Facilities

Compounding Quality Act	 Title I of Drug Quality and Security Act Passed Nov 2013 Reaffirmed Rules for Traditional Compounding Pharmacies (Section 503A) - Individual Patient Prescriptions Required Created "Outsourcing Facilities" (Section 503B)
Outsourcing Facilities	 Must Register with FDA and Follow Good Manufacturing Practices (GMP) for All Compounded Products May Produce "in Bulk" without Need for Prescriptions May Advertise Using Clinical Data if Not False or Misleading
Revenue Opportunity	 PharmacoSurgery[®] Products (e.g., OMS103 and OMS201) are Broadly Patented Combinations of Existing APIs Formulation, Manufacturing and Stability are Well Established Compelling Clinical Data from Placebo-Controlled Trials No Additional Clinical Trials Required



Overview	 Specifically Blocks the Lectin Pathway (LP) Omeros Controls Worldwide Exclusive Rights to the Inhibition of MASP-2 and to All MASP-2 Inhibitors FDA Orphan Designation: Prevention of Complement-Mediated TMAs
OMS721 vs. Soliris®	 Classical Pathway Unaffected Subcutaneous Dosing vs. Intravenous Infusion Role in Coagulation Cascade
Expanding Patent Position	 Identified MASP-3 as Key Activator of Alternative Pathway Advancing High-Affinity, Functionally Active MASP-3 mAbs Generated <i>In Vivo</i> Data around Multiple Indications Expands IP Position to Both Lectin and Alternative Pathways

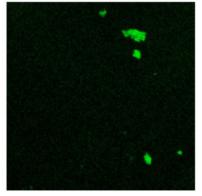

Phase 1 Clinical Program	 Evaluated Safety, Tolerability, Pharmacodynamics and Pharmacokinetics of OMS721 in Healthy Subjects Well Tolerated by Both Intravenous and Subcutaneous Administration Subcutaneous Administration Yielded Sustained LP Inhibition
Phase 2 Clinical Program	 Phase 2 Clinical Trial Evaluating OMS721 in Patients with Complement-Mediated Thrombotic Microangiopathies Includes aHUS, TTP, Stem Cell Transplant-Related TMA Improvements Seen Across all Disease Markers In Low-Dose Cohort Compassionate Use Granted for Two Patients in Low-Dose Cohort Dosing Complete for Mid-Dose Cohort Dose Escalation to High-Dose Cohort Planned for this Month Now Able to Dose Chronically in Humans No Drug-Related Adverse Events in Chronic Toxicology Study Additional Phase 2 Data Expected Later this Year

Background	 Exposure of Human Microvascular Endothelial Cells (HMEC-1) to aHUS Patient Serum, But Not Control Serum, Leads to Complement Activation and Formation of Thrombus Complement Deposition and Thrombus Formation are Blocked By Co-incubation of Patient Sera with Eculizumab Complement Deposition Response Normalizes in aHUS Patients on Eculizumab Therapy Concurrent with Clinical Remission*
Objectives	 Test effect of OMS721 on aHUS Patient Serum-induced: Complement Deposition Thrombus Formation
Results *Gastoldi et al., Immunobiology (2012) 217:1145 Noris et al., Blood (2014) 124:1715	 Complement Deposition: OMS721 Effect Equal to Published Effect of C5 Inhibitors Thrombus Formation: OMS721 Effect Equal to that of Positive Control (SCR-1)

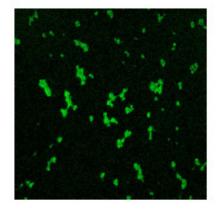
aHUS serum-induced thrombus formation on human microvascular endothelial cells. Data are mean \pm SE. ° P<0.0001, °° P<0.01 vs control; *P<0.0001, **P<0.01 vs aHUS acute phase untreated; § P<0.0001 vs aHUS remission phase untreated.

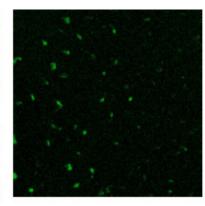
Unpublished data: Remuzzi, et al. 2014

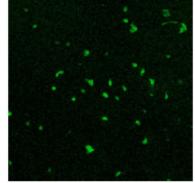
OMS721: Representative Images of aHUS Serum-Stimulated Thrombus Formation



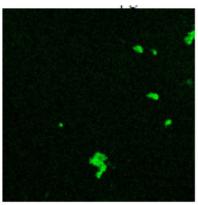
Untreated


aHUS Acute Phase + sCR1


+ OMS721

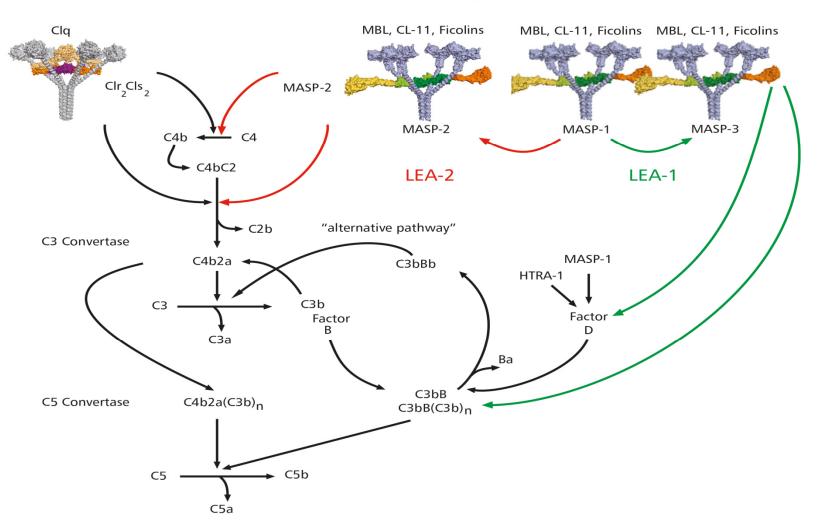


Untreated



aHUS Remission + sCR1

+ OMS721

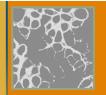

45

Classical Pathway

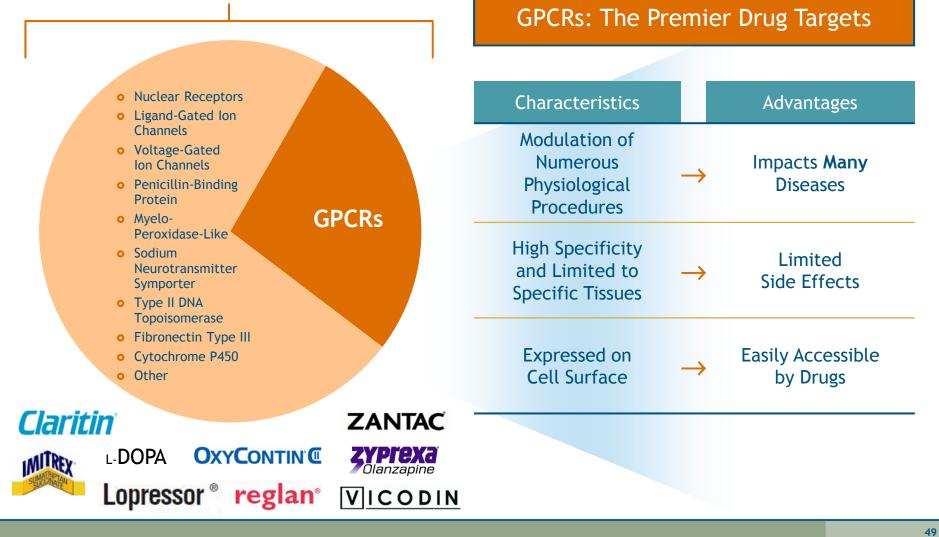
Lectin Pathway

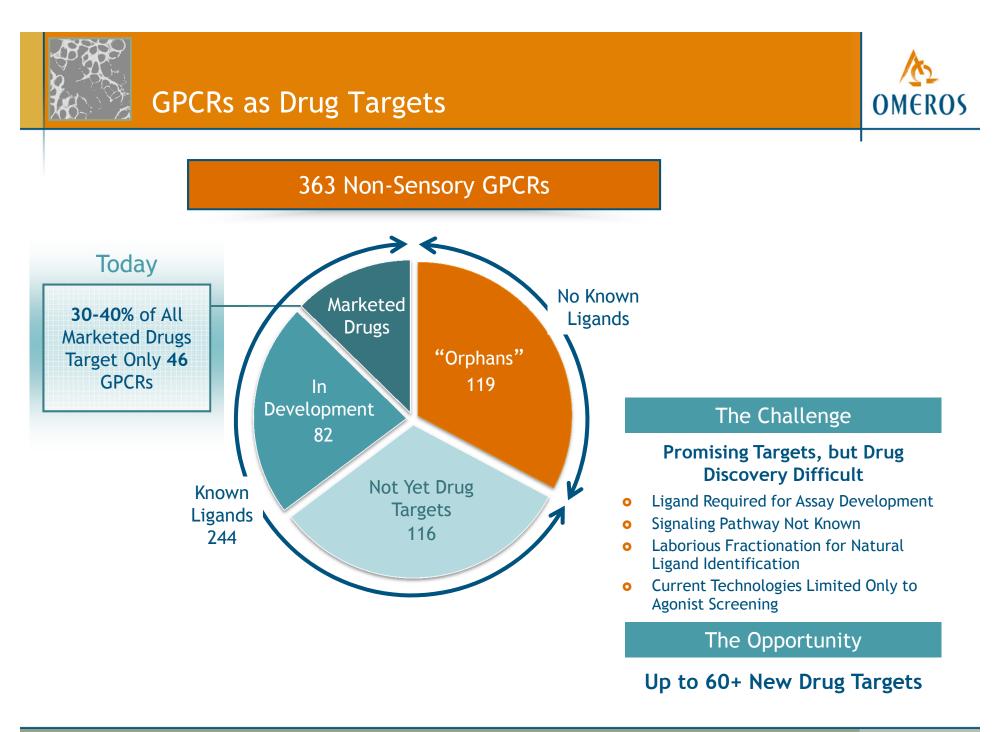
OMS721 is the Only Lectin Pathway-Specific Complement Inhibitor in DevelopmentX

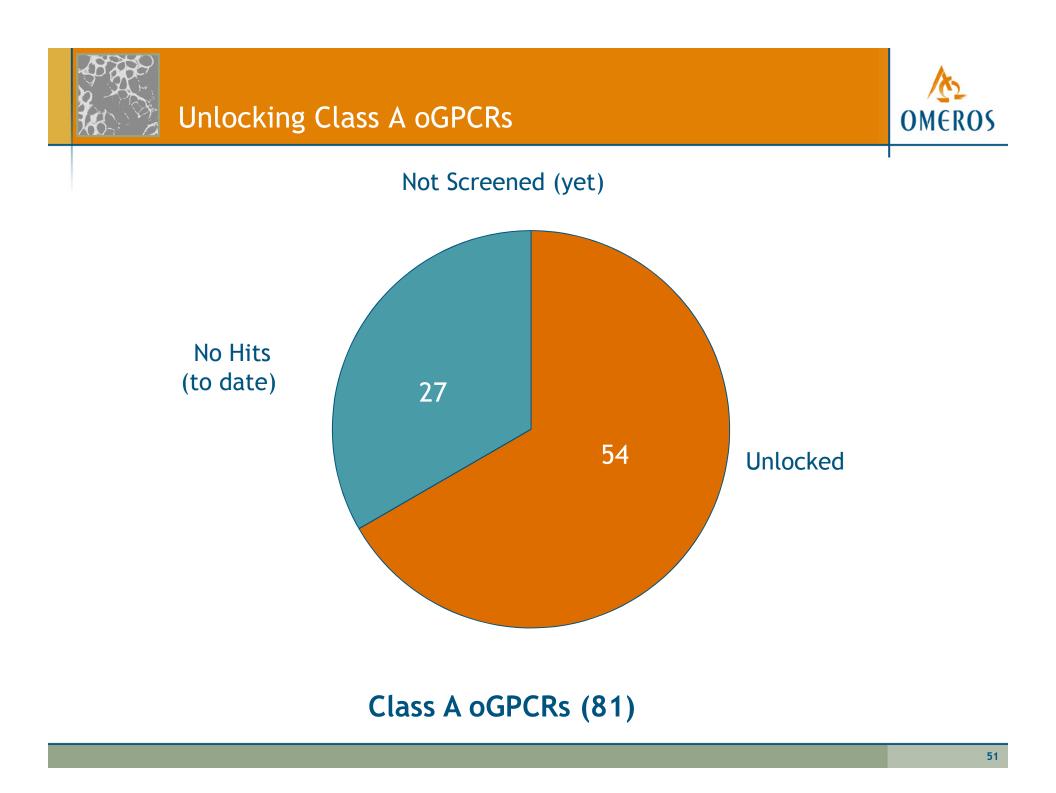
Product	Target	Pathways Blocked	Indication(s)*	Limitations	Status
OMEROS OMS721	MASP-2	Lectin	TMA (Including aHUS), AMD, DN, MN, MI, Stroke, Transplant		Phase 2
KLEXION Soliris®	C5	Alternative, Classical & Lectin	aHUS, PNH, NMO, MG, CAD, Transplant	 High Dosing Required IV Infusion Required Safety Concerns 	Marketed
NOVARTIS POT-4	С3	Alternative, Classical & Lectin	AMD	1. No Systemic Delivery Option	Phase 2
ALXN1103	C3b	Alternative	PNH	 High Dosing Required Short Half-life Safety Concerns 	Phase 1
NOVARTIS LFG316	C5	Alternative, Classical & Lectin	AMD, Choroiditis	1. Intravitreal	Phase 2
OPHTH O TECH Zimura	C5	Alternative, Classical & Lectin	AMD	1. Intravitreal	Phase 2
Genentech A Member of the Roche Group Lampalizumab	Factor D	Alternative	AMD	1. Intravitreal	Phase 3
Apellis APL-2	С3	Alternative, Classical & Lectin	PNH	 Short Half-life Safety concerns 	Phase 1


*aHUS: atypical hemolytic uremic syndrome; AMD: age-related macular degeneration; CAD: cold agglutinin disease; DN: diabetic neuropathy; MG: myastenia gravis; MI: myocardial infarction; MN: membranous nephropathy; NMO: neuromyelitis optica; PNH: paroxysmal nocturnal hemoglobinuria; TMA: thrombotic microangiopathy

Overview	 Potential for Cognitive Enhancement and Neuroprotection Huntington's Disease (HD) FDA Orphan Drug & Fast Track Designations Granted Schizophrenia Alzheimer's Disease/Mild Cognitive Impairment ~70% Human PDE10 Occupancy without EPS
Current Indications	HDSchizophrenia
Clinical Trials	 Successful Phase 1 Single and Multiple-Ascending Dose Trials Once-Daily Dosing with Linear Pharmacokinetics MTD Not Yet Identified (Tolerated at Plasma Concentrations Twice that Obtained at 70% Occupancy) Positive Phase 2a Schizophrenia Trial Dose Adjustment Not Needed When Administered with Concomitant Antipsychotics Phase 2 Programs Currently on Hold; Expect to Re-Initiate Enrollment in HD Program Soon
~30 000 HD Patients in US an	1 One Approved Drug – Tetrabenazine (Chorea Only, Black Box Warning);


-30,000 HD Patients in US and One Approved Drug – Tetrabenazine (Chorea Only, Black Box Warning); 2.2 M Schizophrenia Patients in US / Sales of Atypical Antipsychotics >\$16B




The Significant Potential of GPCRs as Drug Targets

Annual Worldwide Drug Market \$700B+

Orphan GPCRs Unlocked To Date

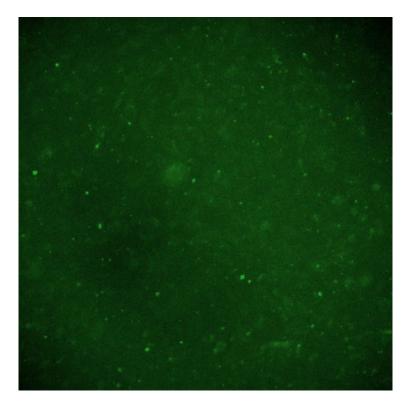
GPCR	Metabolic & Cardiovascular Indications	
GPR12	Obesity, Cognitive Impairments	
GPR21	Obesity, Diabetes	
GPR22	Cardiovascular Diseases, Anxiety	
GPR25	Arterial Stiffness	
GPR37L1	Hypertension	
GPR39	Diabetes	
GPR50	Metabolic Disorders	
GPR61	Eating Disorders	
GPR82	Appetite, Body Weight	
GPR101	Eating Disorders	
GPR132	Atherosclerosis	
GPR146	Dyslipidemia, Diabetes	
GPR171	Eating Disorders	
GPR176	Atherosclerosis	
SREB1/GPR27	Diabetes, Schizophrenia	

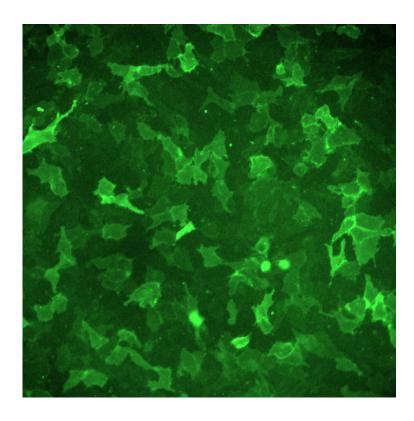
GPCR	Oncology Indications
GPR19	Melanoma, Lung Cancer
GPR20	Gastro-Intestinal Stromal Tumors, Acute Myeloid Leukemia
GPR65	Renal Cell Carcinoma, Ovarian Cancer, Inflammation
GPR68	Ovarian Cancer, Prostate Cancer, Osteoporosis
GPR80	Hepatocellular Carcinoma
GPR87	Squamous Cell Carcinomas
GPR150	Ovarian Cancer
GPR161	Breast Cancer, Congenital Cataracts & Birth Defects
GPR174	Melanoma, Grave's Disease
LGR4	Cancer Stem Cells, Bone Diseases
LGR5	Cancer Stem Cells, Esophageal Adenocarcinoma
P2Y8	Leukemias, Lymphomas

Orphan GPCRs Unlocked To Date

GPCR	CNS Indications	
GPR17	Myelin Disorders, Multiple Sclerosis	
GPR31	Anxiety Disorders	
GPR37	Parkinson's Disease	
GPR52	Schizophrenia	
GPR63	Autism	
GPR78	Bipolar Disorder, Schizophrenia	
GPR139	Motor Disorders	
GPR151	Cognition, Mood Disorders, Pain	
GPR153	Schizophrenia	
MAS1	Cognitive Impairments	
MRGE	Pain	
OPN4	Circadian Rhythm, Sleep Disorders	
SREB2/GPR85	Schizophrenia, Obesity	
SREB3/GPR173	Schizophrenia, Obesity	

GPCR	Miscellaneous Indications
GPR15	HIV Enteropathy, Rheumatoid Arthritis
GPR32	Acute Inflammatory Responses
GPR83	Autoimmune Diseases, PTSD
GPR183	Humoral Immunity
CCRL2	Rheumatoid Arthritis
LGR6	Hair Follicle Stem Cells, Wound Repair


GPCRs with Unknown Indications		
GPR45	GPR182	
GPR135	MRGF	
GPR141	OPN5	
GPR162		


High-Throughput Cellular Redistribution Assay

No Ligand

Ligand

Identifies Agonists, Antagonists, and Inverse Agonists

Evaluation of CRA Hits in Signaling Assays

Signaling Assays	 Reporter Assays Gs, Gi, Gq, G12/13 Signaling Pathways GloSensor Assay Gs and Gi Signaling Pathways Beta-Arrestin Recruitment Assay
Functional Data Provided	 Functional Confirmation of CRA Hits Determination of Nature of Compounds (Agonist, Antagonist, Inverse Agonist) Key IP Component - Uniquely Identifying Primary Signaling Profile

Three Levels of Intellectual Property

1. Linked to Signaling Profile

Independent of Indication

2. Linked to Knock-Out Mice/Phenotypes

Indication-Specific

3. Medicinal Chemistry*

Composition of Matter

*Also applies to establishment of IP position for recalcitrant non-orphan GPCRs

PDE7 (OMS527)	 IND/CTA Submission Planned for Late 2015/1H 2016 Initial Indication: Cocaine/Nicotine Addiction No Current Drug for Cocaine Addiction Omeros Discovered Link between PDE7 and Addiction and between PDE7 and Movement Disorders Omeros Controls PDE7 Broadly for Addiction Disorders and Compulsive Behaviors Movement Disorders (e.g., Parkinson's Disease)
Plasmin (OMS616)	 IND/CTA Submission Planned for 2016 Initial Indications: Trauma and Cardiovascular Surgery Efficacy Equal to Trasylol® by Human <i>Ex Vivo</i> Data Safety Profile Potentially Superior to Trasylol Human Protein (Trasylol is Bovine) Unlike Trasylol, No Activity at Kallikrein or Factor XIa

Products and Programs

Program	Targeted Procedure/ Disease	Pre-clinical	Phase 1	Phase 2	Phase 3	FDA Approval	Commercial Launch	Economic Rights
Commercial Products								
Omidria™ (OMS302) - Ophthalmology	Cataract Surgery or Intraocular Lens Replacement							MEROS
Clinical Programs					- -			
OMS103 - Arthroscopy	Arthroscopic Meniscectomy							
MASP (OMS721) - Complement-Mediated Disorders	TMA (aHUS, TTP, Transplant-Related TMA)							Δ.
PDE10 (OMS824) - CNS Disorders	Schizophrenia							OMEROS
PDE10 (OMS824) - CNS Disorders	Huntington's Disease							
PPARy (OMS405) - Addiction	Opioid and Nicotine Addiction							
OMS201 - Urology	Ureteroscopy							
Preclinical Programs								
PDE7 (OMS527) - CNS Disorders	Addictions and Compulsive Disorders; Movement Disorders							
Plasmin (OMS616) - Bleeding Disorders	Surgical and Traumatic Bleeding							
MASP (OMS906) - Alternative Pathway Disorders	Paroxysmal Noctural Hemoglobinuria							MEROS
GPR17 - CNS Disorders	Demyelinating Disorders							Unchoy
GPCR Platform	Multiple Disorders Across Therapeutic Areas							
Antibody Platform	Multiple Disorders Across Therapeutic Areas							

