

Lectin and Alternative Pathway Activation

- "MBL-associated serine proteases"
- Three MASPs can form complexes with five possible pattern recognition molecules
- Serine protease with pattern binding potential
- Lectins, via carbohydrate recognition domains (CRD), bind molecular patterns on microbes or damaged/altered host tissue
- Inhibitors expected to have broad applications in conditions involving inflammation and tissue damage

Targeting MASP Proteins

MASP Inhibitory MAb Programs

MASP-2 Inhibitor

Narsoplimab

LECTIN PATHWAY

Blocked Upstream

MASP-3 Inhibitor

OMS906

Blocked Upstream

The MASP inhibitor approach preserves classical pathway function

Role of MASP-3 in AP Activity of Human

Presence of MASP-3 is required to drive AP in human serum

Three Pathways of Complement

Three Pathways of Complement

Properties of OMS906

OMS906

Humanized monoclonal antibody **highly potent** and **selective** for MASP-3

Infrequent SubQ Administration

Convenient dosing regimen allows self-administration in an outpatient setting

OMS906
is designed to treat
multiple alternative
pathway-driven
diseases with
infrequent, SubQ
delivery

Phase 1 clinical trial initiated 3Q 2020

Analysis of CFD Status in a Treated Monkey

CFD is matured by cleavage and release of activation peptide on the N-terminus of the protein

IP Ab: α CFD > Western Blot

CFD is present in plasma as pro-CFD following single dose of OMS906

Measurement of CFD Status

CFD is matured by cleavage and release of activation peptide on the N-terminus of the protein

CFD status (pro vs. mature) can be used as direct measurement of MASP-3 inhibition

Measurement of CFD Status

Single-Dose Monkey Study

OMS906 blocks systemic maturation of CFD and results in accumulation of Pro-CFD

Inhibition of the Alternative Pathway in Monkey

Number of Days of ≥ 90% Alternative Pathway Inhibition		
Bb Deposition on Zymosan	Fluid-Phase Ba	Hemolysis of Rabbit RBCs
13	14	12

Single dose is sufficient for sustained inhibition of the Alternative Pathway in monkey

Lowest levels of detectable mature CFD correlate with complete inactivation of the AP

Demonstration of Efficacy in Mouse Disease Models

- In vivo induction of AP with LPS
 - OMS906 decreases systemic Ba levels caused by LPS injection into mice

- Collagen antibody-induced arthritis (CAIA) model
 - OMS906 decreases severity (and incidence) of arthritis

Systemic inhibition of CFD maturation is sufficient to block in vivo AP

OMS906 Potential in Paroxysmal Nocturnal Hemoglobinuria

Paroxysmal Nocturnal Hemoglobinuria (PNH) is a Rare, Chronic, Life-Threatening Complement-Mediated Blood Disorder

PNH is characterized by intravascular and extravascular hemolysis

Unmet Need Persists

~70%

of PNH patients continue to have low hemoglobin levels while on a C5 inhibitor^{1,2}

~1/3

of PNH patients require one or more transfusions a year while on a C5 inhibitor³

^{1.} Risitano AM, Marotta S, Ricci P, et al. (2019) Anti-complement Treatment for Paroxysmal Nocturnal Hemoglobinuria: Time for Proximal Complement Inhibition? A Position Paper From the SAAWP of the EBMT. Front. Immunol. 10:1157. doi: 10.3389/fimmu.2019.01157. 2. Risitano AM, Notaro R, Marando L, et al. (2009) Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood. 2009 Apr 23;113(17):4094-100. 3. McKinley C. Extravascular Hemolysis Due to C3-Loading in Patients with PNH Treated with Eculizumab: Defining the Clinical Syndrome. Blood. 2017;130:3471.

Red Blood Cell Clearance in PNH

OMEROS

Demonstration of Efficacy in PNH Models

- In vitro destruction of <u>human</u> "PNH-like RBCs" (sensitized with αCD55/59 Abs)
 - Hemolysis
 - Opsonization (C3b/iC3b and C3d deposition)
- In vivo clearance of RBCs (Crry-/- mouse RBCs)
 - Primarily model of extravascular pathway of clearance

Red Blood Cell Clearance in PNH

Model of Intravascular Lysis of PNH RBCs: Comparison with C3 and C5 Inhibitor

OMS906 vs. C5 and C3 Inhibitors

	C5 MAb	Compstatin
Relative OMS906	~30-fold	~1000-fold
Potency		

- **-**→ OMS906 (Donor 2)
- C5 mAb (Donor 1)
- Compstatin (Donor 1)
- Compstatin (Donor 2)

OMS906 demonstrates greater potency and greater degree of pathway inhibition than C5 mAb

Comparison to C3 and C5 Inhibition for PNH

OMS906 blocks a shared step in both pathways of PNH RBC clearance.

Donor RBCs Survival

- → OMS906 (5 mg/kg)
- Anti-FB (~40 mg/kg)
- Anti-C5 (~30 mg/kg)
- Isotype (5 mg/kg)
- Vehicle
 - Anti-FB Dose (IP)
- ▼ OMS906 Dose (SC)

OMS906: Combination of Potency, Route of Administration, and Frequency of Dosing

- Potent inhibition of the alternative pathway
- Classical pathway left intact
- Treats both intravascular and extravascular hemolysis
- Broad applications in conditions involving inflammation and tissue damage
- Phase 1 (SAD/MAD) clinical program enrolling
- Targeting monthly subcutaneous dosing

