OMS906, a Mannan-Binding Lectin-Associated Serine Protease-3 (MASP-3) Inhibitor, Normalizes Hemoglobin Levels in Treatment-Naïve PNH Patients: Interim Data From a Proof-of-Concept Clinical Trial

Oksana Karnabeda, MD¹; Eleni Gavriilaki, MD, PhD²; Narinder Nangia, PhD³; Steve Whitaker, MD³; **Jens Panse, MD**⁴,5

¹Bogomolets National Medical University, Kyiv, Ukraine; ²G Papanikolaou Hospital, Thessaloniki, Greece;

³Omeros Corporation, Seattle, Washington, USA; ⁴Universitätsklinikum RWTH Aachen, Germany;

⁵Center of Integrated Oncology (CIO) Aachen, Bonn, Cologne, Düsseldorf (ABCD), Germany

Presented at the EHA 2023 Hybrid Congress | June 8–15, 2023 | Frankfurt, Germany

Author Disclosures

- OK: No conflict of interest.
- **EG:** Consultancy Astra Zeneca, Novartis, and Omeros Corporation.
- **SW**, **NN**: Employee Omeros Corporation.
- JP: Advisory committee Apellis Pharmaceuticals, Inc., Blueprint Medicines, BMS, MSD, Samsung Bioepis Co. Ltd., SOBI, and Sanofi; Speakers' bureaus and advisory committees – Alexion (AstraZeneca Rare Disease), Boehringer Ingelheim, Blueprint Medicines, Novartis, Pfizer, and SOBI.

ACKNOWLEDGMENTS

- This study was sponsored by Omeros Corporation (Seattle, WA)
- Medical writing support was provided by Beatrice V. Vetter-Ceriotti,
 PhD, of AMICULUM USA, and funded by Omeros Corporation (Seattle, WA)

DISCLAIMER

 OMS906 is an investigational agent and has not been approved by any regulatory agency

Scan the QR code to obtain a copy of this presentation*

Clinical Presentation of PNH is Driven by Intravascular Hemolysis due to Dysregulation of the Complement System

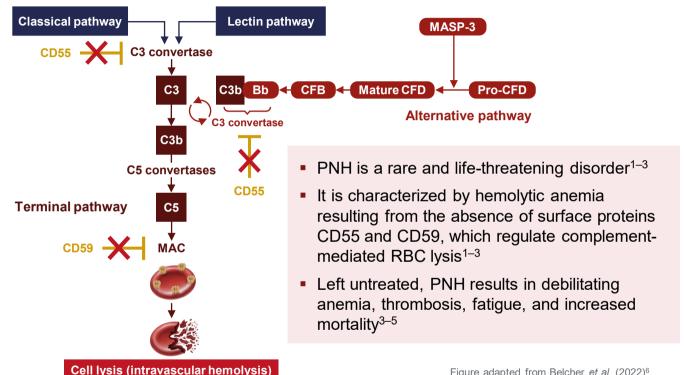


Figure adapted from Belcher et al. (2022)6

CFB, complement Factor B; CFD, complement Factor D; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell.

- 1. Risitano AM et al. Front Immunol. 2019;10:1157. 2. Notaro R et al. N Engl J Med. 2022;387:160-6. 3. Risitano AM et al. Immunol Rev. 2023;313:262-78.
- 4. Loschi M et al. Am J Hematol. 2016;91:366-70. 5. Fattizzo B et al. J Blood Med. 2022;13:327-35. 6. Belcher JD et al. Transl Res. 2022;249:1-12.

Terminal Complement Inhibition in PNH Inhibits Intravascular Hemolysis but Inevitably Leads to Extravascular Hemolysis^{1,2}

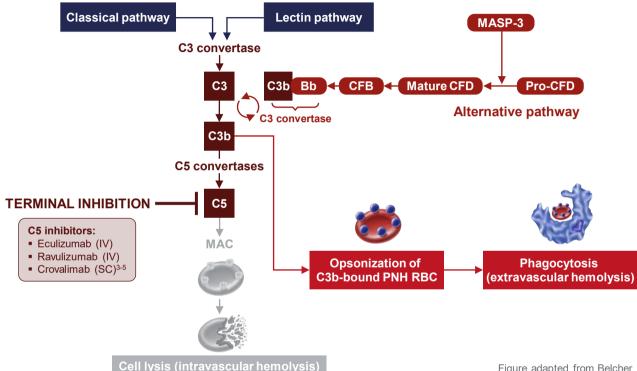
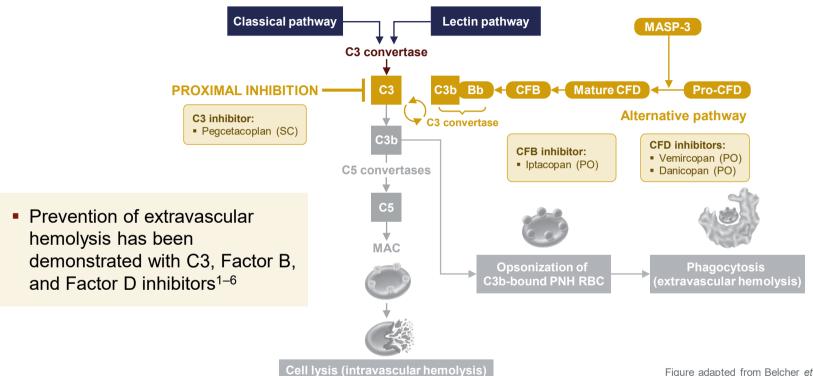


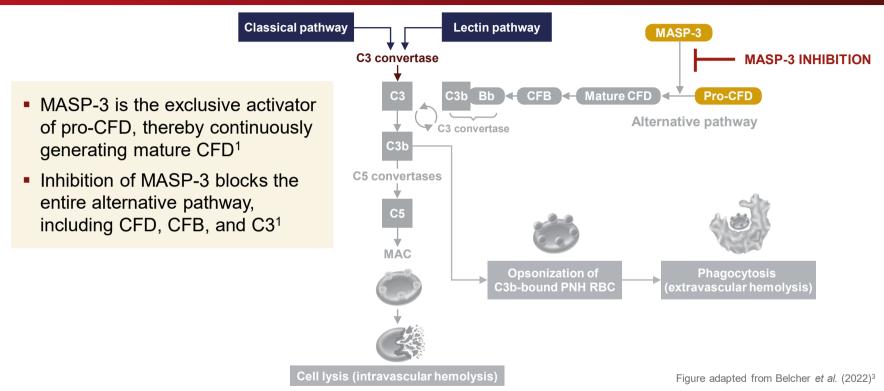
Figure adapted from Belcher et al. (2022)6

CFB, complement Factor B; CFD, complement Factor D; IV, intravenous; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell; SC, subcutaneous.

- 1. Notaro R et al. N Engl J Med. 2022;387:160-6. 2. Risitano AM et al. Immunol Rev. 2023;313:262-78. 3. Röth A et al. HemaSphere 2023;7(S3):S181.
- 4. Kulasekararai A et al. HemaSphere 2023;7(S3);S183, 5. Chang A et al. HemaSphere 2023;7(S3);P785, 6. Belcher JD et al. Transl Res. 2022;249;1–12.

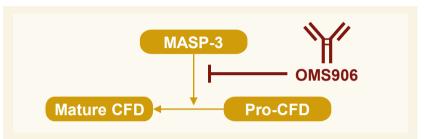
Proximal Inhibition of the Alternative Pathway Blocks Intravascular Hemolysis and Prevents Extravascular Hemolysis^{1,2}



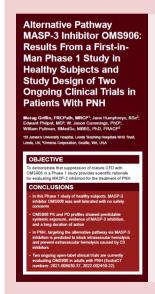

Figure adapted from Belcher et al. (2022)7

CFB, complement Factor B; CFD, complement Factor D; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; PO, orally; RBC, red blood cell; SC, subcutaneous.

^{1.} Notaro R et al. N Engl J Med. 2022;387:160-6. 2. Risitano AM et al. Immunol Rev. 2023;313:262-78. 3. Peffault de Latour P et al. Blood. 2022;140(S2):LBA-2.


^{4.} Risitano AM et al. 49th Annual Meeting of the EBMT 2023:OS12-06. 5. Risitano AM et al. HemaSphere. 2023;7(S3):S182. 6. Peffault de Latour P et al. HemaSphere. 2023;7(S3):P774. 7. Belcher JD et al. Transl Res. 2022;249:1-12.

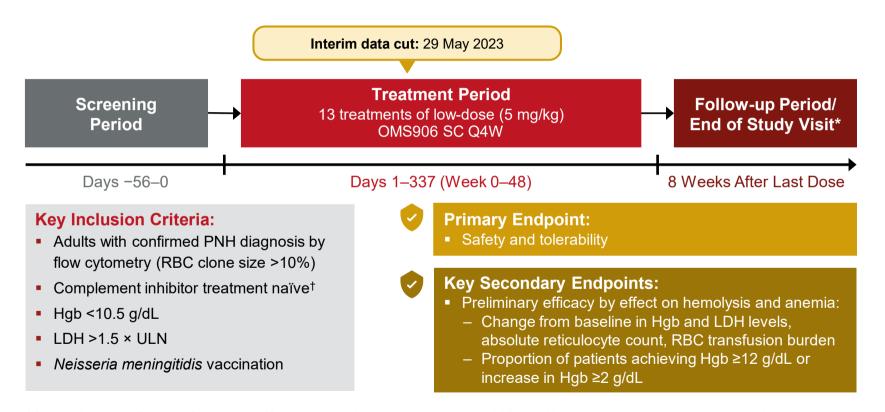
MASP-3 is a Key Activator of the Alternative Pathway and a Novel Target for Treatment of PNH^{1,2}


CFB, complement Factor B; CFD, complement Factor D; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell; SC, subcutaneous.

OMS906 Selectively Targets MASP-3

- OMS906 is a highly selective humanized IgG4 mAb that binds to and inhibits MASP-3^{1,2}
- It can be administered SC or IV:2
 - T ½ (geometric mean): 239–406 h (SC)
 - T ½ (geometric mean): 94–399 h (IV)
- In a Phase 1 study in healthy subjects, OMS906 was well tolerated, with 5 mg/kg SC providing substantial MASP-3 inhibition through Day 42²

 For further information on OMS906 in healthy subjects, please see EHA Poster
 P787 or scan the below QR code:



Scan the QR code to obtain a copy of this poster*

*Copies obtained through this QR code are for personal use only and may not be reproduced

IgG, immunoglobulin G; IV, intravenous; mAb, monoclonal antibody; MASP-3, mannan-binding lectin-associated serine protease 3; QR, quick response; SC, subcutaneous; $T\frac{1}{2}$, terminal elimination half-life.

Study Design for the Treatment-Naïve Cohort in an Ongoing Phase 1b Trial of OMS906 (NCT05889299; EudraCT 2022-002450-22)

^{*}If patient discontinues from study for any reason; †Patients treated with any complement pathway inhibitor within 6 months prior to screening were excluded. Hgb, hemoglobin; LDH, lactate dehydrogenase; PNH, paroxysmal nocturnal hemoglobinuria; Q4W, every 4 weeks; RBC, red blood cell; SC, subcutaneous; ULN, upper limit of normal.

Thus Far, All Enrolled Patients Are Complement Inhibitor Treatment Naïve

- This study enrolled patients between 20 December 2022 and 3 April 2023
 - Interim analysis data cut: 29 May 2023
- 10 patients have received low-dose OMS906 (5 mg/kg)

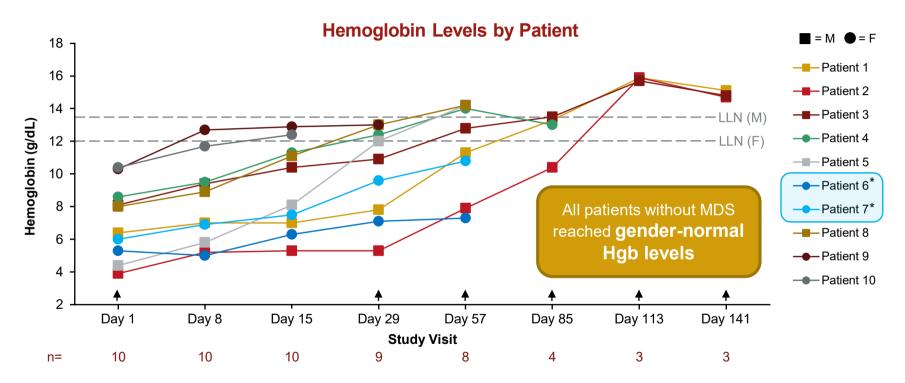
No of Patients	Doses received
10	≥1
9	≥2
8	≥3
4	≥4
3	6

 This study provided treatment access for patients with PNH who had no other options available

The Majority of Patients Received RBC Transfusions in the 12 Months Prior to OMS906 Treatment

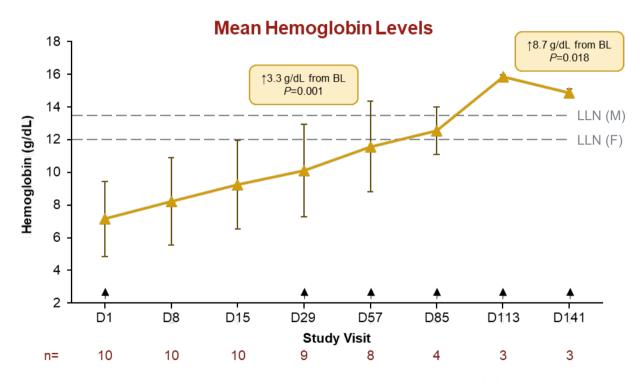
	OMS906 5 mg/kg SC N=10		
Baseline demographics	Mean (SD)	Median (range)	
Age, years	42.3 (15.8)	38.5 (27–72)	
Weight, kg	72.6 (12.1)	68.5 (59–91)	
Female, n (%)	5 (50)		
Caucasian, n (%)	10 (100)		
PNH disease characteristics	Mean (SD)	Median (range)	
Time since PNH diagnosis, years	3.2 (3.7)	0.8 (0.02-7.8)	
PNH RBC clone size, % [n=7]	52.4 (23.9)	60.3 (15–88)	
Patients receiving RBC transfusions*, n (%)	7 (70)		
Patients receiving steroids for PNH, n (%)	4 (40)		
Laboratory marker at baseline	Mean (SD)	Median (range)	
Hgb, g/dL	7.1 (2.3)	7.2 (3.9–10.4)	
LDH, U/L	1828 (789)	1748 (905–3480)	
Absolute reticulocytes, ×109/L	175 (69)	151 (107–307)	

	OMS906 5 mg/kg SC N=10
Medical history, n (%)	N-10
Iron deficiency	5 (50)
Chronic kidney disease	3 (30)
MDS	2 (20)
Aplastic anemia	2 (20)
Folate deficiency	2 (20)
B12 deficiency	1 (10)
Concomitant medications, n (%)	
Ursodiol	8 (80)
Rivaroxaban	7 (70)
Iron	4 (40)
Folate	3 (30)
Enoxaparin	3 (30)
Vitamin B12	1 (10)


OMS906 Treatment Was Well Tolerated in Patients with PNH

Adverse Events in ≥20% of Patients	n (%)	CTCAE Grade
Headache	2 (20)	All Grade 2
Itching	3 (30)	All Grade 1
Increased thrombocytopenia	3 (30)	1 patient Grade 2* 1 patient Grade 3* 1 patient Grade 4 [†]
Transient neutropenia	2 (20)	2 patients Grade 3
Reduction in neutrophils	2 (20)	1 patient Grade 2 1 patient Grade 3

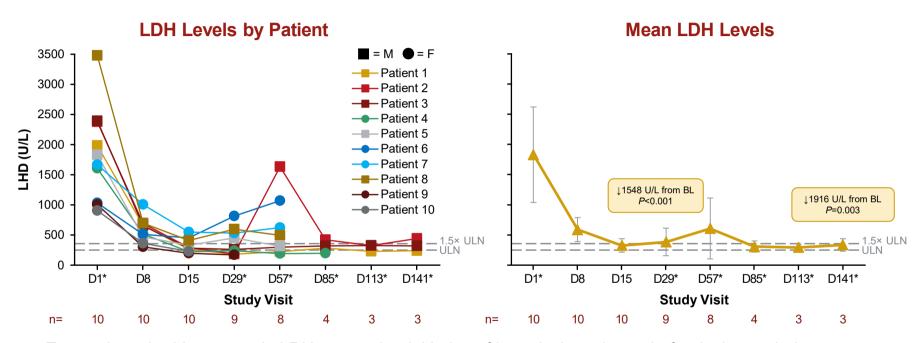
- Patients with reported cytopenia had evidence of underlying bone marrow failure
- No clinical breakthrough hemolysis


- No MAVEs
- No SAEs, discontinuations, or deaths

Treatment with Low-Dose OMS906 Rapidly Improved Hemoglobin Levels

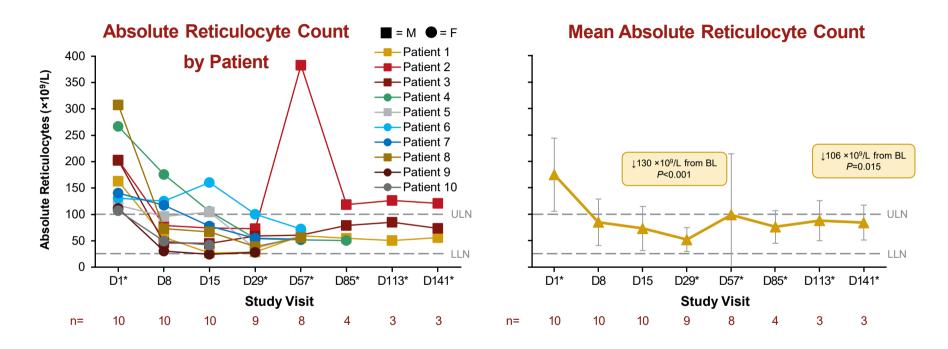
No patients required transfusions following initiation of OMS906 treatment

Treatment with Low-Dose OMS906 Rapidly Improved Hemoglobin Levels

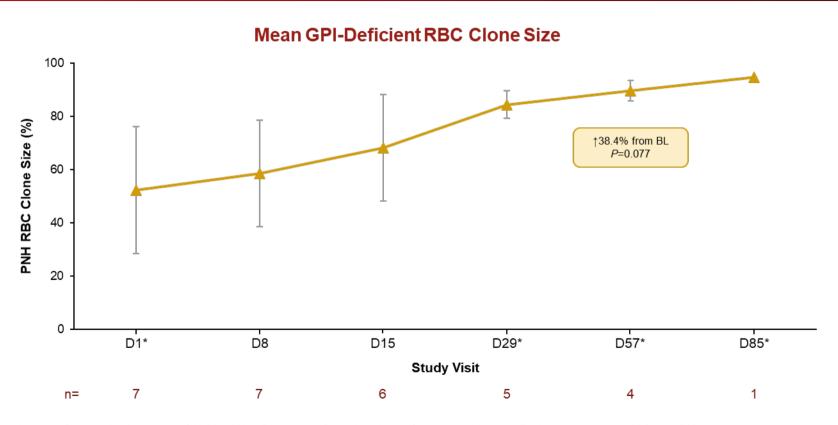

10/10 patients had an increase in Hgb ≥2 g/dL

8/10* patients achieved Hgb ≥12 g/dL

*The remaining 2 patients had MDS


No patients required transfusions following initiation of OMS906 treatment

Treatment with Low-Dose OMS906 Reduced LDH Levels


- Two patients had increases in LDH suggesting initiation of hemolysis at the end of a dosing period, although hemoglobin was not reduced in either
- PK and PD from these patients will help inform planned dose escalation to achieve once-quarterly dosing

Absolute Reticulocyte Count Decreased Overall with OMS906 Treatment

■ Mean absolute reticulocyte counts were reduced from baseline by 90–133 ×10⁹/L at all timepoints

PNH Clone Size Increased Over Time with OMS906 Treatment, Indicating Protection of PNH RBCs

Data shown are from interim data cut as of 29 May 2023. *P*-values are for testing change from zero using t-test; *P*-values may not be valid for small N. *OMS906 administered following laboratory marker collection. BL, baseline; GPI, glycosylphosphatidylinositol; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell.

Conclusions

- MASP-3 is a key activator of the alternative pathway and a novel target for PNH treatment
- OMS906, a MASP-3 inhibitor, showed promising efficacy in this interim analysis:
 - Normalization of Hgb (8/10 patients) was achieved with monthly SC dosing without clinical breakthrough hemolysis
 - Normalization of LDH (7/10 patients
 <1.5 × ULN), normalization of reticulocytes
 (9/10 patients), and transfusion independence
 were achieved
 - OMS906 was well tolerated with no safety signals of concern

- OMS906 dose escalation guided by the PK / PD of patients experiencing subclinical hemolysis is underway to inform achievement of quarterly dosing
- Further evaluation of OMS906 for PNH will explore GPI-deficient patients who have a suboptimal response to C5 inhibitors or are complement inhibitor treatment-naïve
- C5-switchover PNH trials and C3G trials are underway; additional alternative pathwaymediated indications are being evaluated

Scan the QR code to obtain a copy of this presentation*

^{*}Copies obtained through this QR code are for personal use only and may not be reproduced.

GPI, glycosylphosphatidylinositol; Hgb, hemoglobin; LDH, lactate dehydrogenase; MASP-3, mannan-binding lectin-associated serine protease 3; PD, pharmacodynamics; PK, pharmacokinetics; PNH, paroxysmal nocturnal hemoglobinuria; SC, subcutaneous; ULN, upper limit of normal.

Special Thanks to the Patients and Healthcare Professionals in Ukraine Who Participated in This Study!

