OMS906, a Mannan-Binding Lectin-Associated Serine Protease-3 (MASP-3) Inhibitor, Normalizes Hemoglobin Levels in Treatment-Naïve PNH Patients: Interim Data From a Proof-of-Concept Clinical Trial

Oksana Karnabeda, MD¹; Eleni Gavriilaki, MD, PhD²; Narinder Nangia, PhD³; Steve Whitaker, MD³; Jens Panse, MD⁴,⁵

¹Bogomolets National Medical University, Kyiv, Ukraine; ²G Papanikolaou Hospital, Thessaloniki, Greece; ³Omeros Corporation, Seattle, Washington, USA; ⁴Universitätsklinikum RWTH Aachen, Germany; ⁵Center of Integrated Oncology (CIO) Aachen, Bonn, Cologne, Düsseldorf (ABCD), Germany

Presented at the EHA 2023 Hybrid Congress | June 8–15, 2023 | Frankfurt, Germany
Author Disclosures

- **OK**: No conflict of interest.
- **EG**: Consultancy – Astra Zeneca, Novartis, and Omeros Corporation.
- **SW, NN**: Employee – Omeros Corporation.
- **JP**: Advisory committee – Apellis Pharmaceuticals, Inc., Blueprint Medicines, BMS, MSD, Samsung Bioepis Co. Ltd., SOBI, and Sanofi; Speakers’ bureaus and advisory committees – Alexion (AstraZeneca Rare Disease), Boehringer Ingelheim, Blueprint Medicines, Novartis, Pfizer, and SOBI.

ACKNOWLEDGMENTS

- This study was sponsored by Omeros Corporation (Seattle, WA)
- Medical writing support was provided by Beatrice V. Vetter-Ceriotti, PhD, of AMICULUM USA, and funded by Omeros Corporation (Seattle, WA)

DISCLAIMER

- OMS906 is an investigational agent and has not been approved by any regulatory agency

Copies obtained through this QR code are for personal use only and may not be reproduced.
Clinical Presentation of PNH is Driven by Intravascular Hemolysis due to Dysregulation of the Complement System

- PNH is a rare and life-threatening disorder1–3
- It is characterized by hemolytic anemia resulting from the absence of surface proteins CD55 and CD59, which regulate complement-mediated RBC lysis1–3
- Left untreated, PNH results in debilitating anemia, thrombosis, fatigue, and increased mortality3–5

Figure adapted from Belcher et al. (2022)6

Terminal Complement Inhibition in PNH Inhibits Intravascular Hemolysis but Inevitably Leads to Extravascular Hemolysis1,2

CFB, complement Factor B; CFD, complement Factor D; IV, intravenous; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell; SC, subcutaneous.

Proximal Inhibition of the Alternative Pathway Blocks Intravascular Hemolysis and Prevents Extravascular Hemolysis

- Prevention of extravascular hemolysis has been demonstrated with C3, Factor B, and Factor D inhibitors

C3b inhibitor: Pegcetacoplan (SC)

CFB inhibitor: Iptacopan (PO)

CFD inhibitors: Vemircopan (PO), Danicopan (PO)

Figure adapted from Belcher et al. (2022)

CFB, complement Factor B; CFD, complement Factor D; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; PO, orally; RBC, red blood cell; SC, subcutaneous.

MASP-3 is a Key Activator of the Alternative Pathway and a Novel Target for Treatment of PNH

- MASP-3 is the exclusive activator of pro-CFD, thereby continuously generating mature CFD
- Inhibition of MASP-3 blocks the entire alternative pathway, including CFD, CFB, and C3

MASP-3 INHIBITION

Figure adapted from Belcher et al. (2022)

CFB, complement Factor B; CFD, complement Factor D; MAC, membrane attack complex; MASP-3, mannan-binding lectin-associated serine protease-3; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell; SC, subcutaneous.
OMS906 is a highly selective humanized IgG4 mAb that binds to and inhibits MASP-3.\(^1,2\)

It can be administered SC or IV:\(^2\)
- T ½ (geometric mean): 239–406 h (SC)
- T ½ (geometric mean): 94–399 h (IV)

In a Phase 1 study in healthy subjects, OMS906 was well tolerated, with 5 mg/kg SC providing substantial MASP-3 inhibition through Day 42\(^2\)

For further information on OMS906 in healthy subjects, please see EHA Poster P787 or scan the below QR code:

Scan the QR code to obtain a copy of this poster*

*Copies obtained through this QR code are for personal use only and may not be reproduced

IgG, immunoglobulin G; IV, intravenous; mAb, monoclonal antibody; MASP-3, mannan-binding lectin-associated serine protease 3; QR, quick response; SC, subcutaneous; T½, terminal elimination half-life.

Study Design for the Treatment-Naïve Cohort in an Ongoing Phase 1b Trial of OMS906 (NCT05889299; EudraCT 2022-002450-22)

Key Inclusion Criteria:
- Adults with confirmed PNH diagnosis by flow cytometry (RBC clone size >10%)
- Complement inhibitor treatment naïve†
- Hgb <10.5 g/dL
- LDH >1.5 × ULN
- Neisseria meningitidis vaccination

Interim data cut: 29 May 2023

Screening Period
Days −56–0

Treatment Period
13 treatments of low-dose (5 mg/kg) OMS906 SC Q4W
Days 1–337 (Week 0–48)

Follow-up Period/End of Study Visit*
8 Weeks After Last Dose

Primary Endpoint:
- Safety and tolerability

Key Secondary Endpoints:
- Preliminary efficacy by effect on hemolysis and anemia:
 - Change from baseline in Hgb and LDH levels, absolute reticulocyte count, RBC transfusion burden
 - Proportion of patients achieving Hgb ≥12 g/dL or increase in Hgb ≥2 g/dL

*If patient discontinues from study for any reason; †Patients treated with any complement pathway inhibitor within 6 months prior to screening were excluded. Hgb, hemoglobin; LDH, lactate dehydrogenase; PNH, paroxysmal nocturnal hemoglobinuria; Q4W, every 4 weeks; RBC, red blood cell; SC, subcutaneous; ULN, upper limit of normal.
Thus Far, All Enrolled Patients Are Complement Inhibitor Treatment Naïve

- This study enrolled patients between 20 December 2022 and 3 April 2023
 - Interim analysis data cut: 29 May 2023

- 10 patients have received low-dose OMS906 (5 mg/kg)

<table>
<thead>
<tr>
<th>No of Patients</th>
<th>Doses received</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>≥1</td>
</tr>
<tr>
<td>9</td>
<td>≥2</td>
</tr>
<tr>
<td>8</td>
<td>≥3</td>
</tr>
<tr>
<td>4</td>
<td>≥4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

- This study provided treatment access for patients with PNH who had no other options available

PNH, paroxysmal nocturnal hemoglobinuria.
The Majority of Patients Received RBC Transfusions in the 12 Months Prior to OMS906 Treatment

<table>
<thead>
<tr>
<th></th>
<th>OMS906 5 mg/kg SC N=10</th>
<th>OMS906 5 mg/kg SC N=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>Mean (SD) 42.3 (15.8)</td>
<td>Median (range) 38.5 (27–72)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>72.6 (12.1) 68.5 (59–91)</td>
<td></td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>5 (50) 10 (100)</td>
<td></td>
</tr>
<tr>
<td>Caucasian, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNH disease characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time since PNH diagnosis, years</td>
<td>Mean (SD) 3.2 (3.7)</td>
<td>Median (range) 0.8 (0.02–7.8)</td>
</tr>
<tr>
<td>PNH RBC clone size, % [n=7]</td>
<td>52.4 (23.9) 60.3 (15–88)</td>
<td></td>
</tr>
<tr>
<td>Patients receiving RBC transfusions*, n (%)</td>
<td>7 (70)</td>
<td></td>
</tr>
<tr>
<td>Patients receiving steroids for PNH, n (%)</td>
<td>4 (40)</td>
<td></td>
</tr>
<tr>
<td>Laboratory marker at baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hgb, g/dL</td>
<td>Mean (SD) 7.1 (2.3)</td>
<td>Median (range) 7.2 (3.9–10.4)</td>
</tr>
<tr>
<td>LDH, U/L</td>
<td>1828 (789) 1748 (905–3480)</td>
<td></td>
</tr>
<tr>
<td>Absolute reticulocytes, ×10⁹/L</td>
<td>175 (69) 151 (107–307)</td>
<td></td>
</tr>
</tbody>
</table>

Data shown are from interim data cut as of 29 May 2023. *In the 12 months prior to OMS906 treatment.

Hgb, hemoglobin; LDH, lactate dehydrogenase; MDS, myelodysplastic syndrome; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell; SC, subcutaneous; SD, standard deviation.
Patients with reported cytopenia had evidence of underlying bone marrow failure

No clinical breakthrough hemolysis

No MAVEs

No SAEs, discontinuations, or deaths

Data shown are from interim data cut as of 29 May 2023. *Received iron therapy. †Had pre-existing Grade 3 thrombocytopenia and myelodysplastic syndrome. CTCAE, common terminology criteria for adverse events; MAVE, major adverse vascular event; PNH, paroxysmal nocturnal hemoglobinuria; SAE, serious adverse event.
Treatment with Low-Dose OMS906 Rapidly Improved Hemoglobin Levels

- No patients required transfusions following initiation of OMS906 treatment

Data shown are from interim data cut as of 29 May 2023. Black arrows indicate OMS906 administration following laboratory marker collection.

*Patients 6 and 7 had MDS. F, female; LLN, lower limit of normal; M, male; MDS, myelodysplastic syndrome.
Treatment with Low-Dose OMS906 Rapidly Improved Hemoglobin Levels

10/10 patients had an increase in Hgb ≥2 g/dL

8/10* patients achieved Hgb ≥12 g/dL
*The remaining 2 patients had MDS

No patients required transfusions following initiation of OMS906 treatment

Data shown are from interim data cut as of 29 May 2023. P-values are for testing change from zero using t-test; P-values may not be valid for small N. Black arrows indicate OMS906 administration following laboratory marker collection. BL, baseline; Hgb, hemoglobin; LLN, lower limit of normal; MDS, myelodysplastic syndrome.
Two patients had increases in LDH suggesting initiation of hemolysis at the end of a dosing period, although hemoglobin was not reduced in either.

PK and PD from these patients will help inform planned dose escalation to achieve once-quarterly dosing.

Data shown are from interim data cut as of 29 May 2023. P-values are for testing change from zero using t-test; P-values may not be valid for small N.

*OMS906 administered following laboratory marker collection. BL, baseline; LDH, lactate dehydrogenase; LLN, lower limit of normal; ULN, upper limit of normal.
Mean absolute reticulocyte counts were reduced from baseline by 90–133 $\times 10^9/L$ at all timepoints.

Data shown are from interim data cut as of 29 May 2023. P-values are for testing change from zero using t-test; P-values may not be valid for given small N.

*OMS906 administered following laboratory marker collection. BL, baseline; F, female; LLN, lower limit of normal; M, male; ULN, upper limit of normal.
PNH Clone Size Increased Over Time with OMS906 Treatment, Indicating Protection of PNH RBCs

Data shown are from interim data cut as of 29 May 2023. P-values are for testing change from zero using t-test; P-values may not be valid for small N.

*OMS906 administered following laboratory marker collection. BL, baseline; GPI, glycosylphosphatidylinositol; PNH, paroxysmal nocturnal hemoglobinuria; RBC, red blood cell.
Conclusions

- MASP-3 is a key activator of the alternative pathway and a novel target for PNH treatment

- OMS906, a MASP-3 inhibitor, showed promising efficacy in this interim analysis:
 - Normalization of Hgb (8/10 patients) was achieved with monthly SC dosing without clinical breakthrough hemolysis
 - Normalization of LDH (7/10 patients <1.5 × ULN), normalization of reticulocytes (9/10 patients), and transfusion independence were achieved
 - OMS906 was well tolerated with no safety signals of concern

- OMS906 dose escalation guided by the PK / PD of patients experiencing subclinical hemolysis is underway to inform achievement of quarterly dosing

- Further evaluation of OMS906 for PNH will explore GPI-deficient patients who have a suboptimal response to C5 inhibitors or are complement inhibitor treatment-naïve

- C5-switchover PNH trials and C3G trials are underway; additional alternative pathway-mediated indications are being evaluated

*Copies obtained through this QR code are for personal use only and may not be reproduced.
GPI, glycosylphosphatidylinositol; Hgb, hemoglobin; LDH, lactate dehydrogenase; MASP-3, mannan-binding lectin-associated serine protease 3; PD, pharmacodynamics; PK, pharmacokinetics; PNH, paroxysmal nocturnal hemoglobinuria; SC, subcutaneous; ULN, upper limit of normal.
Special Thanks to the Patients and Healthcare Professionals in Ukraine Who Participated in This Study!